Hardbound

Puzzle Solving

Whether you're picking an apartment or a secretary, Brian Christian and Tom Griffiths wants you make use of algorithms to tackle everyday problems

|
Published 6 years ago on May 18, 2018 4 minutes Read

In your search for a secretary, there are two ways you can fail: stopping early and stopping late. When you stop too early, you leave the best applicant undiscovered. When you stop too late, you hold out for a better applicant who doesn’t exist. The optimal strategy will clearly require finding the right balance between the two, walking the tightrope between looking too much and not enough.

If your aim is finding the very best applicant, settling for nothing less, it’s clear that as you go through the interview process you shouldn’t even consider hiring somebody who isn’t the best you’ve seen so far. However, simply being the best yet isn’t enough for an offer; the very first applicant, for example, will of course be the best yet by definition. More generally, it stands to reason that the rate at which we encounter “best yet” applicants will go down as we proceed in our interviews. For instance, the second applicant has a 50/50 chance of being the best we’ve yet seen, but the fifth applicant only has a 1-in-5 chance of being the best so far, the sixth has a 1-in-6 chance, and so on. As a result, best-yet applicants will become steadily more impressive as the search continues (by definition, again, they’re better than all those who came before)—but they will also become more and more infrequent.

Okay, so we know that taking the first best-yet applicant we encounter (a.k.a. the first applicant, period) is rash. If there are a hundred applicants, it also seems hasty to make an offer to the next one who’s best-yet, just because she was better than the first. So how do we proceed?

Intuitively, there are a few potential strategies. For instance, making an offer the third time an applicant trumps everyone seen so far—or maybe the fourth time. Or perhaps taking the next best-yet applicant to come along after a long “drought”—a long streak of poor ones.

But as it happens, neither of these relatively sensible strategies comes out on top. Instead, the optimal solution takes the form of what we’ll call the Look-Then-Leap Rule: You set a predetermined amount of time for “looking”—that is, exploring your options, gathering data—in which you categorically don’t choose anyone, no matter how impressive. After that point, you enter the “leap” phase, prepared to instantly commit to anyone who outshines the best applicant you saw in the look phase.

We can see how the Look-Then-Leap Rule emerges by considering how the secretary problem plays out in the smallest applicant pools. With just one applicant the problem is easy to solve—hire her! With two applicants, you have a 50/50 chance of success no matter what you do. You can hire the first applicant (who’ll turn out to be the best half the time), or dismiss the first and by default hire the second (who is also best half the time).

Add a third applicant, and all of a sudden things get interesting. The odds if we hire at random are one-third, or 33%. With two applicants we could do no better than chance; with three, can we? It turns out we can, and it all comes down to what we do with the second interviewee. When we see the first applicant, we have no information — she’ll always appear to be the best yet. When we see the third applicant, we have no agency—we have to make an offer to the final applicant, since we’ve dismissed the others. But when we see the second applicant, we have a little bit of both: we know whether she’s better or worse than the first, and we have the freedom to either hire or dismiss her. What happens when we just hire her if she’s better than the first applicant, and dismiss her if she’s not? This turns out to be the best possible strategy when facing three applicants; using this approach it’s possible, surprisingly, to do just as well in the three-applicant problem as with two, choosing the best applicant exactly half the time.

Enumerating these scenarios for four applicants tells us that we should still begin to leap as soon as the second applicant; with five applicants in the pool, we shouldn’t leap before the third.

As the applicant pool grows, the exact place to draw the line between looking and leaping settles to 37% of the pool, yielding the 37% Rule: look at the first 37% of the applicants, choosing none, then be ready to leap for anyone better than all those you’ve seen so far.

This is an extract from Brian Christian and Tom Griffiths' Algorithms To Live By published by Henry Holt and Co